Structural domains in phospholemman: a possible role for the carboxyl terminus in channel inactivation.

نویسندگان

  • Z Chen
  • L R Jones
  • J J O'Brian
  • J R Moorman
  • S E Cala
چکیده

Phospholemman (PLM) is a small (72-amino acid) transmembrane protein found in cardiac sarcolemma that is a major substrate for several protein kinases in vivo. Detailed structural data for PLM is lacking, but several studies have described an ion conductance that results from PLM expression in oocytes. Moreover, addition of purified PLM to lipid bilayers generates similar ion currents, suggesting that the PLM molecule itself might be sufficient for channel formation. To provide a framework for understanding the function of PLM, we investigated PLM topology and structure in sarcolemmal membrane vesicles and analyzed purified recombinant PLM. Immunoblot analyses with site-specific antibodies revealed that the extracellular segment (residues 1 to 17) exists in a protected configuration highly resistant to proteases, even in detergent solutions. The intracellular portion of the molecule (residues 38 to 72), in contrast, was highly susceptible to proteases. Trypsin treatment produced a limit peptide (residues 1 to 43), which showed little change in electrophoretic mobility in SDS gels and retained the ion-channel activity in lipid bilayers that is characteristic of the full-length protein. In addition, we found that conductance through PLM channels exhibited rapid inactivation during depolarizing ramps at voltages greater than +/- 50 mV, Channels formed by trypsinized PLM or recombinant PLM 1-43 exhibited dramatic reductions in voltage-dependent inactivations. Our data point to distinct domains within the PLM molecule that may correlate with functional properties of channel activity observed in oocytes and lipid bilayers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Perturbation of Sodium Channel Structure by an Inherited Long Qt Syndrome Mutation

The cardiac voltage-gated sodium channel (Na(V)1.5) underlies impulse conduction in the heart, and its depolarization-induced inactivation is essential in control of the duration of the QT interval of the electrocardiogram. Perturbation of Na(V)1.5 inactivation by drugs or inherited mutation can underlie and trigger cardiac arrhythmias. The carboxy terminus has an important role in channel inac...

متن کامل

Structural Regions of the Cardiac Ca Channel α1C Subunit Involved in Ca-dependent Inactivation

We investigated the molecular basis for Ca-dependent inactivation of the cardiac L-type Ca channel. Transfection of HEK293 cells with the wild-type alpha or its 3' deletion mutant (alpha) produced channels that exhibited prominent Ca-dependent inactivation. To identify structural regions of alpha involved in this process, we analyzed chimeric alpha subunits in which one of the major intracellul...

متن کامل

Sodium channel carboxyl-terminal residue regulates fast inactivation.

The Na(v)1.2 and Na(v)1.3 voltage-gated sodium channel isoforms demonstrate distinct differences in their kinetics and voltage dependence of fast inactivation when expressed in Xenopus oocytes. Co-expression of the auxiliary beta1 subunit accelerated inactivation of both the Na(v)1.2 and Na(v)1.3 isoforms, but it did not eliminate the differences, demonstrating that this property is inherent in...

متن کامل

The role of the divergent amino and carboxyl domains on the inactivation properties of potassium channels derived from the Shaker gene of Drosophila.

Several products generated from the Drosophila Shaker gene by alternative splicing predict a group of similar proteins with an identical central and variable amino and carboxyl domains. We have constructed 9 Sh cDNAs combining 3 different 5' domains with 3 different 3' domains. RNA transcribed from 6 of these cDNAs induce K+ currents in Xenopus oocytes. All currents share similar properties of ...

متن کامل

Calcium-mediated dual-mode regulation of cardiac sodium channel gating.

Intracellular Ca(2+) ([Ca(2+)](i)) can trigger dual-mode regulation of the voltage gated cardiac sodium channel (Na(V)1.5). The channel components of the Ca(2+) regulatory system are the calmodulin (CaM)-binding IQ motif and the Ca(2+) sensing EF hand-like (EFL) motif in the carboxyl terminus of the channel. Mutations in either motif have been associated with arrhythmogenic changes in expressed...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Circulation research

دوره 82 3  شماره 

صفحات  -

تاریخ انتشار 1998